Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Robustness of Adversarial Samples Detection for Automatic Speaker Verification (2006.06186v2)

Published 11 Jun 2020 in eess.AS, cs.LG, and cs.SD

Abstract: Recently adversarial attacks on automatic speaker verification (ASV) systems attracted widespread attention as they pose severe threats to ASV systems. However, methods to defend against such attacks are limited. Existing approaches mainly focus on retraining ASV systems with adversarial data augmentation. Also, countermeasure robustness against different attack settings are insufficiently investigated. Orthogonal to prior approaches, this work proposes to defend ASV systems against adversarial attacks with a separate detection network, rather than augmenting adversarial data into ASV training. A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples. To investigate detector robustness in a realistic defense scenario where unseen attack settings may exist, we analyze various kinds of unseen attack settings' impact and observe that the detector is robust (6.27\% EER_{det} degradation in the worst case) against unseen substitute ASV systems, but it has weak robustness (50.37\% EER_{det} degradation in the worst case) against unseen perturbation methods. The weak robustness against unseen perturbation methods shows a direction for developing stronger countermeasures.

Citations (37)

Summary

We haven't generated a summary for this paper yet.