Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Approximations and Error Analysis of the Cahn-Hilliard Equation with Dynamic Boundary Conditions (2006.05391v2)

Published 9 Jun 2020 in math.NA and cs.NA

Abstract: We consider the numerical approximations of the Cahn-Hilliard equation with dynamic boundary conditions (C. Liu et. al., Arch. Rational Mech. Anal., 2019). We propose a first-order in time, linear and energy stable numerical scheme, which is based on the stabilized linearly implicit approach. The energy stability of the scheme is proved and the semi-discrete-in-time error estimates are carried out. Numerical experiments, including the comparison with the former work, the accuracy tests with respect to the time step size and the shape deformation of a droplet, are performed to validate the accuracy and the stability of the proposed scheme.

Citations (12)

Summary

We haven't generated a summary for this paper yet.