Papers
Topics
Authors
Recent
2000 character limit reached

Boolean algebras of conditionals, probability and logic

Published 8 Jun 2020 in math.LO, cs.LO, and math.PR | (2006.04673v1)

Abstract: This paper presents an investigation on the structure of conditional events and on the probability measures which arise naturally in this context. In particular we introduce a construction which defines a (finite) {\em Boolean algebra of conditionals} from any (finite) Boolean algebra of events. By doing so we distinguish the properties of conditional events which depend on probability and those which are intrinsic to the logico-algebraic structure of conditionals. Our main result provides a way to regard standard two-place conditional probabilities as one-place probability functions on conditional events. We also consider a logical counterpart of our Boolean algebras of conditionals with links to preferential consequence relations for non-monotonic reasoning. The overall framework of this paper provides a novel perspective on the rich interplay between logic and probability in the representation of conditional knowledge.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.