Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Flow Approach to the Calculation of Stationary States on Nonlinear Quantum Graphs (2006.04404v3)

Published 8 Jun 2020 in math.AP, cs.NA, and math.NA

Abstract: We introduce and implement a method to compute stationary states of nonlinear Schr\''odinger equations on metric graphs. Stationary states are obtained as local minimizers of the nonlinear Schr\''odinger energy at fixed mass. Our method is based on a normalized gradient flow for the energy (i.e. a gradient flow projected on a fixed mass sphere) adapted to the context of nonlinear quantum graphs. We first prove that, at the continuous level, the normalized gradient flow is well-posed, mass-preserving, energy diminishing and converges (at least locally) towards stationary states. We then establish the link between the continuous flow and its discretized version. We conclude by conducting a series of numerical experiments in model situations showing the good performance of the discrete flow to compute stationary states. Further experiments as well as detailed explanation of our numerical algorithm are given in a companion paper.

Citations (11)

Summary

We haven't generated a summary for this paper yet.