Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Steklov eigenvalues for the Lamé operator in linear elasticity (2006.04308v3)

Published 8 Jun 2020 in math.AP, cs.NA, and math.NA

Abstract: In this paper we study Steklov eigenvalues for the Lam\'e operator which arise in the theory of linear elasticity. In this eigenproblem the spectral parameter appears in a Robin boundary condition, linking the traction and the displacement. To establish the existence of a countable spectrum for this problem, we present an extension of Korn's inequality. We also show that a proposed conforming Galerkin scheme provides convergent approximations to the true eigenvalues. A standard finite element method is used to conduct numerical experiments on 2D and 3D domains to support our theoretical findings.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)