Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimizing Acquisition Maximizing Inference -- A demonstration on print error detection (2006.03839v1)

Published 6 Jun 2020 in eess.IV

Abstract: Is it possible to detect a feature in an image without ever looking at it? Images are known to have sparser representation in Wavelets and other similar transforms. Compressed Sensing is a technique which proposes simultaneous acquisition and compression of any signal by taking very few random linear measurements (M). The quality of reconstruction directly relates with M, which should be above a certain threshold for a reliable recovery. Since these measurements can non-adaptively reconstruct the signal to a faithful extent using purely analytical methods like Basis Pursuit, Matching Pursuit, Iterative thresholding, etc., we can be assured that these compressed samples contain enough information about any relevant macro-level feature contained in the (image) signal. Thus if we choose to deliberately acquire an even lower number of measurements - in order to thwart the possibility of a comprehensible reconstruction, but high enough to infer whether a relevant feature exists in an image - we can achieve accurate image classification while preserving its privacy. Through the print error detection problem, it is demonstrated that such a novel system can be implemented in practise.

Citations (2)

Summary

We haven't generated a summary for this paper yet.