Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overcoming Overfitting and Large Weight Update Problem in Linear Rectifiers: Thresholded Exponential Rectified Linear Units (2006.02797v1)

Published 4 Jun 2020 in cs.LG, cs.CV, cs.NE, and stat.ML

Abstract: In past few years, linear rectified unit activation functions have shown its significance in the neural networks, surpassing the performance of sigmoid activations. RELU (Nair & Hinton, 2010), ELU (Clevert et al., 2015), PRELU (He et al., 2015), LRELU (Maas et al., 2013), SRELU (Jin et al., 2016), ThresholdedRELU, all these linear rectified activation functions have its own significance over others in some aspect. Most of the time these activation functions suffer from bias shift problem due to non-zero output mean, and high weight update problem in deep complex networks due to unit gradient, which results in slower training, and high variance in model prediction respectively. In this paper, we propose, "Thresholded exponential rectified linear unit" (TERELU) activation function that works better in alleviating in overfitting: large weight update problem. Along with alleviating overfitting problem, this method also gives good amount of non-linearity as compared to other linear rectifiers. We will show better performance on the various datasets using neural networks, considering TERELU activation method compared to other activations.

Citations (4)

Summary

We haven't generated a summary for this paper yet.