Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cartan structure equations and Levi-Civita connection in braided geometry (2006.02761v2)

Published 4 Jun 2020 in math.QA, hep-th, math-ph, and math.MP

Abstract: We study the differential and Riemannian geometry of algebras $A$ endowed with an action of a triangular Hopf algebra $H$ and noncomutativity compatible with the associated braiding. The modules of one forms and of braided derivations are modules in a compact closed category of $H$-modules $A$-bimodules, whose internal morphisms correspond to tensor fields. Different approaches to curvature and torsion are proven to be equivalent by extending the Cartan calculus to left (right) $A$-module connections. The Cartan structure equations and the Bianchi identities are derived. Existence and uniqueness of the Levi-Civita connection for arbitrary braided symmetric pseudo-Riemannian metrics is proven.

Summary

We haven't generated a summary for this paper yet.