Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical methods for accurate computation of the eigenvalues of Hermitian matrices and the singular values of general matrices (2006.02753v1)

Published 4 Jun 2020 in math.NA and cs.NA

Abstract: This paper offers a review of numerical methods for computation of the eigenvalues of Hermitian matrices and the singular values of general and some classes of structured matrices. The focus is on the main principles behind the methods that guarantee high accuracy even in the cases that are ill-conditioned for the conventional methods. First, it is shown that a particular structure of the errors in a finite precision implementation of an algorithm allows for a much better measure of sensitivity and that computation with high accuracy is possible despite a large classical condition number. Such structured errors incurred by finite precision computation are in some algorithms e.g. entry-wise or column-wise small, which is much better than the usually considered errors that are in general small only when measured in the Frobenius matrix norm. Specially tailored perturbation theory for such structured perturbations of Hermitian matrices guarantees much better bounds for the relative errors in the computed eigenvalues. % Secondly, we review an unconventional approach to accurate computation of the singular values and eigenvalues of some notoriously ill-conditioned structured matrices, such as e.g. Cauchy, Vandermonde and Hankel matrices. The distinctive feature of accurate algorithms is using the intrinsic parameters that define such matrices to obtain a non-orthogonal factorization, such as the \textsf{LDU} factorization, and then computing the singular values of the product of thus computed factors. The state of the art software is discussed as well.

Citations (1)

Summary

We haven't generated a summary for this paper yet.