Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online End-to-End Neural Diarization with Speaker-Tracing Buffer (2006.02616v2)

Published 4 Jun 2020 in eess.AS and cs.SD

Abstract: This paper proposes a novel online speaker diarization algorithm based on a fully supervised self-attention mechanism (SA-EEND). Online diarization inherently presents a speaker's permutation problem due to the possibility to assign speaker regions incorrectly across the recording. To circumvent this inconsistency, we proposed a speaker-tracing buffer mechanism that selects several input frames representing the speaker permutation information from previous chunks and stores them in a buffer. These buffered frames are stacked with the input frames in the current chunk and fed into a self-attention network. Our method ensures consistent diarization outputs across the buffer and the current chunk by checking the correlation between their corresponding outputs. Additionally, we trained SA-EEND with variable chunk-sizes to mitigate the mismatch between training and inference introduced by the speaker-tracing buffer mechanism. Experimental results, including online SA-EEND and variable chunk-size, achieved DERs of 12.54% for CALLHOME and 20.77% for CSJ with 1.4s actual latency.

Citations (44)

Summary

We haven't generated a summary for this paper yet.