Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction of short and long-term droughts using artificial neural networks and hydro-meteorological variables (2006.02581v1)

Published 3 Jun 2020 in physics.ao-ph and stat.ML

Abstract: Drought is a natural creeping threat with numerous damaging effects in various aspects of human life. Accurate drought prediction is a promising step in helping policy makers to set drought risk management strategies. To fulfill this purpose, choosing appropriate models plays an important role in predicting approach. In this study, different models of Artificial Neural Network (ANN) are employed to predict short and long-term of droughts by using Standardized Precipitation Index (SPI) at different time scales, including 3, 6, 12, 24 and 48 months in Tabriz city, Iran. To this end, different combination of calculated SPI and time series of various hydro-meteorological variables, such as precipitation, wind velocity, relative humidity and sunshine hours for years 1992 to 2010 are used to train the ANN models. In order to compare the models performances, some well-known measures, namely RMSE, Mean Absolute Error (MAE) and Correlation Coefficient (CC) are utilized in the present study. The results illustrate that the application of all hydro-meteorological variables significantly improves the prediction of SPI at different time scales.

Citations (15)

Summary

We haven't generated a summary for this paper yet.