Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study on Key Technologies of Transit Passengers Travel Pattern Mining and Applications based on Multiple Sources of Data (2006.02526v1)

Published 26 May 2020 in eess.SP, cs.IR, cs.LG, cs.SY, eess.SY, and physics.soc-ph

Abstract: In this research, we propose a series of methodologies to mine transit riders travel pattern and behavioral preferences, and then we use these knowledges to adjust and optimize the transit systems. Contributions are: 1) To increase the data validity: a) we propose a novel approach to rectify the time discrepancy of data between the AFC (Automated Fare Collection) systems and AVL (Automated Vehicle Location) system, our approach transforms data events into signals and applies time domain correlation the detect and rectify their relative discrepancies. b) By combining historical data and passengers ticketing time stamps, we induct and compensate missing information in AVL datasets. 2) To infer passengers alighting point, we introduce a maximum probabilistic model incorporating passengers home place to recover their complete transit trajectory from semi-complete boarding records.Then we propose an enhance activity identification algorithm which is capable of specifying passengers short-term activity from ordinary transfers. Finally, we analyze the temporal-spatial characteristic of transit ridership. 3) To discover passengers travel demands. We integrate each passengers trajectory data in multiple days and construct a Hybrid Trip Graph (HTG). We then use a depth search algorithm to derive the spatially closed transit trip chains; Finally, we use closed transit trip chains of passengers to study their travel pattern from various perspectives. Finally, we analyze urban transit corridors by aggregating the passengers critical transit chains.4) We derive eight influential factors, and then construct passengers choice models under various scenarios. Next, we validate our model using ridership re-distribute simulations. Finally, we conduct a comprehensive analysis on passengers temporal choice preference and use this information to optimize urban transit systems.

Summary

We haven't generated a summary for this paper yet.