Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Robust Decision Policies from Observational Data (2006.02355v1)

Published 3 Jun 2020 in cs.LG, stat.AP, and stat.ML

Abstract: We address the problem of learning a decision policy from observational data of past decisions in contexts with features and associated outcomes. The past policy maybe unknown and in safety-critical applications, such as medical decision support, it is of interest to learn robust policies that reduce the risk of outcomes with high costs. In this paper, we develop a method for learning policies that reduce tails of the cost distribution at a specified level and, moreover, provide a statistically valid bound on the cost of each decision. These properties are valid under finite samples -- even in scenarios with uneven or no overlap between features for different decisions in the observed data -- by building on recent results in conformal prediction. The performance and statistical properties of the proposed method are illustrated using both real and synthetic data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.