Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit approximations of option prices via Malliavin calculus in a general stochastic volatility framework (2006.01542v4)

Published 2 Jun 2020 in q-fin.MF

Abstract: We obtain an explicit approximation formula for European put option prices within a general stochastic volatility model with time-dependent parameters. Our methodology involves writing the put option price as an expectation of a Black-Scholes formula, reparameterising the volatility process and then performing a number of expansions. The bulk of the work is due to computing a number of expectations induced by the expansion procedure explicitly, which we achieve by appealing to techniques from Malliavin calculus. We obtain the explicit representation of the form of the error generated by the expansion procedure, and we provide sufficient ingredients in order to obtain a meaningful bound. Under the assumption of piecewise-constant parameters, our approximation formulas become closed-form, and moreover we are able to establish a fast calibration scheme. Furthermore, we perform a numerical sensitivity analysis to investigate the quality of our approximation formula in the so-called Stochastic Verhulst model, and show that the errors are well within the acceptable range for application purposes.

Summary

We haven't generated a summary for this paper yet.