Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantized tensor FEM for multiscale problems: diffusion problems in two and three dimensions (2006.01455v1)

Published 2 Jun 2020 in math.NA and cs.NA

Abstract: Homogenization in terms of multiscale limits transforms a multiscale problem with $n+1$ asymptotically separated microscales posed on a physical domain $D \subset \mathbb{R}d$ into a one-scale problem posed on a product domain of dimension $(n+1)d$ by introducing $n$ so-called "fast variables". This procedure allows to convert $n+1$ scales in $d$ physical dimensions into a single-scale structure in $(n+1)d$ dimensions. We prove here that both the original, physical multiscale problem and the corresponding high-dimensional, one-scale limiting problem can be efficiently treated numerically with the recently developed quantized tensor-train finite-element method (QTT-FEM). The method is based on restricting computation to sequences of nested subspaces of low dimensions (which are called tensor ranks) within a vast but generic "virtual" (background) discretization space. In the course of computation, these subspaces are computed iteratively and data-adaptively at runtime, bypassing any "offline precomputation". For the purpose of theoretical analysis, such low-dimensional subspaces are constructed analytically to bound the tensor ranks vs. error $\tau>0$. We consider a model linear elliptic multiscale problem in several physical dimensions and show, theoretically and experimentally, that both (i) the solution of the associated high-dimensional one-scale problem and (ii) the corresponding approximation to the solution of the multiscale problem admit efficient approximation by the QTT-FEM. These problems can therefore be numerically solved in a scale-robust fashion by standard (low-order) PDE discretizations combined with state-of-the-art general-purpose solvers for tensor-structured linear systems. We prove scale-robust exponential convergence, i.e., that QTT-FEM achieves accuracy $\tau$ with the number of effective degrees of freedom scaling polynomially in $\log \tau$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.