Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WattsApp: Power-Aware Container Scheduling (2006.00342v1)

Published 30 May 2020 in cs.DC

Abstract: Containers are becoming a popular workload deployment mechanism in modern distributed systems. However, there are limited software-based methods (hardware-based methods are expensive requiring hardware level changes) for obtaining the power consumed by containers for facilitating power-aware container scheduling, an essential activity for efficient management of distributed systems. This paper presents WattsApp, a tool underpinned by a six step software-based method for power-aware container scheduling to minimize power cap violations on a server. The proposed method relies on a neural network-based power estimation model and a power capped container scheduling technique. Experimental studies are pursued in a lab-based environment on 10 benchmarks deployed on Intel and ARM processors. The results highlight that the power estimation model has negligible overheads for data collection - nearly 90% of all data samples can be estimated with less than a 10% error, and the Mean Absolute Percentage Error (MAPE) is less than 6%. The power-aware scheduling of WattsApp is more effective than Intel's Running Power Average Limit (RAPL) based power capping for both single and multiple containers as it does not degrade the performance of all containers running on the server. The results confirm the feasibility of WattsApp.

Citations (7)

Summary

We haven't generated a summary for this paper yet.