Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN Without Sharing Medical Image Data (2006.00080v2)

Published 29 May 2020 in eess.IV, cs.CV, and cs.LG

Abstract: In this paper, we propose a data privacy-preserving and communication efficient distributed GAN learning framework named Distributed Asynchronized Discriminator GAN (AsynDGAN). Our proposed framework aims to train a central generator learns from distributed discriminator, and use the generated synthetic image solely to train the segmentation model.We validate the proposed framework on the application of health entities learning problem which is known to be privacy sensitive. Our experiments show that our approach: 1) could learn the real image's distribution from multiple datasets without sharing the patient's raw data. 2) is more efficient and requires lower bandwidth than other distributed deep learning methods. 3) achieves higher performance compared to the model trained by one real dataset, and almost the same performance compared to the model trained by all real datasets. 4) has provable guarantees that the generator could learn the distributed distribution in an all important fashion thus is unbiased.

Citations (71)

Summary

We haven't generated a summary for this paper yet.