Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Aspects of Entanglement Entropy in Algebraic Quantum Field Theory (2005.13975v2)

Published 28 May 2020 in hep-th, math-ph, and math.MP

Abstract: In this thesis, we study aspects of entanglement theory of quantum field theories from an algebraic point of view. The main motivation is to gain insights about the general structure of the entanglement in QFT, towards a definition of an entropic version of QFT. In the opposite direction, we are also interested in exploring any consequence of the entanglement in algebraic QFT. This may help us to reveal unknown features of QFT, with the final aim of finding a dynamical principle which allows us to construct non-trivial and rigorous models of QFT. The algebraic approach is the natural framework to define and study entanglement in QFT, and hence, to pose the above inquiries. After a self-contained review of algebraic QFT and quantum information theory in operator algebras, we focus on our results. We compute, in a mathematically rigorous way, exact solutions of entanglement measures and modular Hamiltonians for specific QFT models, using algebraic tools from modular theory of von Neumann algebras. These calculations show explicitly non-local features of modular Hamiltonians and help us to solve ambiguities that arise in other non-rigorous computations. We also study aspects of entanglement entropy in theories having superselection sectors coming from global symmetries. We follow the algebraic perspective of Doplicher, Haag, and Roberts. In this way, we find an entropic order parameter that "measures" the size of the symmetry group, which is made out of a difference of two mutual informations. Moreover, we identify the main operators that take account of such a difference, and we obtain a new quantum information quantity, the entropic certainty relation, involving algebras containing such operators. This certainty relation keeps an intrinsic connection with subfactor theory of von Neumann algebras.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)