Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BeCAPTCHA: Behavioral Bot Detection using Touchscreen and Mobile Sensors benchmarked on HuMIdb (2005.13655v2)

Published 27 May 2020 in cs.CR and cs.HC

Abstract: In this paper we study the suitability of a new generation of CAPTCHA methods based on smartphone interactions. The heterogeneous flow of data generated during the interaction with the smartphones can be used to model human behavior when interacting with the technology and improve bot detection algorithms. For this, we propose BeCAPTCHA, a CAPTCHA method based on the analysis of the touchscreen information obtained during a single drag and drop task in combination with the accelerometer data. The goal of BeCAPTCHA is to determine whether the drag and drop task was realized by a human or a bot. We evaluate the method by generating fake samples synthesized with Generative Adversarial Neural Networks and handcrafted methods. Our results suggest the potential of mobile sensors to characterize the human behavior and develop a new generation of CAPTCHAs. The experiments are evaluated with HuMIdb (Human Mobile Interaction database), a novel multimodal mobile database that comprises 14 mobile sensors acquired from 600 users. HuMIdb is freely available to the research community.

Citations (20)

Summary

We haven't generated a summary for this paper yet.