Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling limit and strict convexity of free energy for gradient models with non-convex potential (2005.12973v3)

Published 26 May 2020 in math-ph and math.MP

Abstract: We consider gradient models on the lattice $\mathbb{Z}d$. These models serve as effective models for interfaces and are also known as continuous Ising models. The height of the interface is modelled by a random field with an energy which is a non-convex perturbation of the quadratic interaction. We are interested in the Gibbs measure with tilted boundary condition $u$ at inverse temperature $\beta$ of this model. In [AKM16], [Hil16] and [ABKM19] the authors show that for small tilt $u$ and large inverse temperature $\beta$ the surface tension is strictly convex, where the limit is taken on a subsequence. Moreover, it is shown that the scaling limit (again on a subsequence) is the Gaussian free field on the continuum torus. The method of the proof is a rigorous implementation of the renormalisation group method following a general strategy developed by Brydges and coworkers. In this paper the renormalisation group analysis is extended from the finite-volume flow to an infinite-volume version to eliminate the necessity of the subsequence in the results in [AKM16], [Hil16] and [ABKM19].

Summary

We haven't generated a summary for this paper yet.