Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbolic and Structural Model-Checking (2005.12911v4)

Published 26 May 2020 in cs.DC, cs.FL, and cs.LO

Abstract: Brute-force model-checking consists in exhaustive exploration of the state-space of a Petri net, and meets the dreaded state-space explosion problem. In contrast, this paper shows how to solve model-checking problems using a combination of techniques that stay in complexity proportional to the size of the net structure rather than to the state-space size. We combine an SMT based over-approximation to prove that some behaviors are unfeasible, an under-approximation using memory-less sampling of runs to find witness traces or counter-examples, and a set of structural reduction rules that can simplify both the system and the property. This approach was able to win by a clear margin the model-checking contest 2020 for reachability queries as well as deadlock detection, thus demonstrating the practical effectiveness and general applicability of the system of rules presented in this paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. de Moura LM, Bjørner N. Z3: An Efficient SMT Solver. In: TACAS, volume 4963 of Lecture Notes in Computer Science. Springer, 2008 pp. 337–340. doi:10.1007/978-3-540-78800-3_24.
  2. Wimmel H, Wolf K. Applying CEGAR to the Petri Net State Equation. In: TACAS, volume 6605 of Lecture Notes in Computer Science. Springer, 2011 pp. 224–238. doi:10.2168/LMCS-8(3:27)2012.
  3. Counterexample-Guided Abstraction Refinement. In: CAV, volume 1855 of LNCS. Springer, 2000 pp. 154–169. doi:10.1007/10722167_15.
  4. Lipton RJ. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM, 1975. 18(12):717–721. doi:10.1145/361227.361234.
  5. Berthelot G. Checking properties of nets using transformation. In: Applications and Theory in Petri Nets, volume 222 of Lecture Notes in Computer Science. Springer, 1985 pp. 19–40.
  6. Thierry-Mieg Y. Structural Reductions Revisited. In: Petri Nets, volume 12152 of Lecture Notes in Computer Science. Springer, 2020 pp. 303–323. doi:10.1007/978-3-030-51831-8_15.
  7. Presentation of the 9th Edition of the Model Checking Contest. In: Tools and Algorithms for the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III, volume 11429 of Lecture Notes in Computer Science. Springer, 2019 pp. 50–68. doi:10.1007/978-3-030-17502-3_4.
  8. D’Anna M, Trigila S. Concurrent system analysis using Petri nets: an optimized algorithm for finding net invariants. Computer Communications, 1988. 11(4):215–220. doi:10.1016/0140-3664(88)90085-0.
  9. Best E, Schlachter U. Analysis of Petri Nets and Transition Systems. In: ICE, volume 189 of EPTCS. 2015 pp. 53–67. doi:10.4204/EPTCS.189.6.
  10. Esparza J, Melzer S. Verification of Safety Properties Using Integer Programming: Beyond the State Equation. Formal Methods in System Design, 2000. 16(2):159–189. doi:10.1023/A:1008743212620.
  11. Murata T. State equation, controllability, and maximal matchings of Petri nets. IEEE Transactions on Automatic Control, 1977. 22:412–416.
  12. Laarman A. Stubborn Transaction Reduction. In: NFM, volume 10811 of Lecture Notes in Computer Science. Springer, 2018 pp. 280–298. doi:10.1007/978-3-319-77935-5_20.
  13. Syntactical Colored Petri Nets Reductions. In: ATVA, volume 3707 of Lecture Notes in Computer Science. Springer, 2005 pp. 202–216. doi:10.1007/11562948_17.
  14. Haddad S, Pradat-Peyre J. New Efficient Petri Nets Reductions for Parallel Programs Verification. Parallel Processing Letters, 2006. 16(1):101–116. doi:10.1142/S0129626406002502.
  15. Stubborn versus structural reductions for Petri nets. J. Log. Algebr. Meth. Program., 2019. 102:46–63. doi:10.1016/j.jlamp.2018.09.002.
  16. Counting Petri net markings from reduction equations. International Journal on Software Tools for Technology Transfer, 2019. 22:163–181. doi:10.1007/s10009-019-00519-1.
  17. Liu G, Barkaoui K. A survey of siphons in Petri nets. Inf. Sci., 2016. 363:198–220. doi:10.1016/ j.ins.2015.08.037.
  18. García-Vallés F, Colom JM. Implicit places in net systems. In: PNPM. IEEE Computer Society, 1999 pp. 104–113. doi:10.1109/PNPM.1999.796557.
  19. Simplification of CTL Formulae for Efficient Model Checking of Petri Nets. In: Petri Nets, volume 10877 of Lecture Notes in Computer Science. Springer, 2018 pp. 143–163. doi:10.1007/978-3-319-91268-4_8.
  20. Thierry-Mieg Y. Symbolic Model-Checking Using ITS-Tools. In: TACAS, volume 9035 of Lecture Notes in Computer Science. Springer, 2015 pp. 231–237. doi:10.1007/978-3-662-46681-0_20.
Citations (4)

Summary

We haven't generated a summary for this paper yet.