Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Street-to-Aerial View Image Geo-localization and Orientation Estimation (2005.11592v2)

Published 23 May 2020 in cs.CV

Abstract: Street-to-aerial image geo-localization, which matches a query street-view image to the GPS-tagged aerial images in a reference set, has attracted increasing attention recently. In this paper, we revisit this problem and point out the ignored issue about image alignment information. We show that the performance of a simple Siamese network is highly dependent on the alignment setting and the comparison of previous works can be unfair if they have different assumptions. Instead of focusing on the feature extraction under the alignment assumption, we show that improvements in metric learning techniques significantly boost the performance regardless of the alignment. Without leveraging the alignment information, our pipeline outperforms previous works on both panorama and cropped datasets. Furthermore, we conduct visualization to help understand the learned model and the effect of alignment information using Grad-CAM. With our discovery on the approximate rotation-invariant activation maps, we propose a novel method to estimate the orientation/alignment between a pair of cross-view images with unknown alignment information. It achieves state-of-the-art results on the CVUSA dataset.

Citations (55)

Summary

We haven't generated a summary for this paper yet.