Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Role of Autoencoders in Adversarial Settings (2005.10750v1)

Published 21 May 2020 in cs.CV and cs.LG

Abstract: To combat against adversarial attacks, autoencoder structure is widely used to perform denoising which is regarded as gradient masking. In this paper, we revisit the role of autoencoders in adversarial settings. Through the comprehensive experimental results and analysis, this paper presents the inherent property of adversarial robustness in the autoencoders. We also found that autoencoders may use robust features that cause inherent adversarial robustness. We believe that our discovery of the adversarial robustness of the autoencoders can provide clues to the future research and applications for adversarial defense.

Citations (3)

Summary

We haven't generated a summary for this paper yet.