Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Toeplitz Matrices: The Condition Number under High Stochastic Dependence (2005.09775v2)

Published 19 May 2020 in math.PR, cs.NA, and math.NA

Abstract: In this paper, we study the condition number of a random Toeplitz matrix. Since a Toeplitz matrix is a diagonal constant matrix, its rows or columns cannot be stochastically independent. This situation does not permit us to use the classic strategy to analyze its minimum singular value when all the entries of a random matrix are stochastically independent. Using a circulant embedding, we can break the stochastic dependence of the structure of the Toeplitz matrix and reduce the problem to analyze the extreme singular values of a random circulant matrix. Among our results, we show the condition number of non--symmetric random circulant matrix of dimension $n$ under the existence of moment generating function of the random entries is $\kappa\left(\mathcal{C}n\right) = \mbox{O}\left( \frac{1}{\varepsilon} n{\rho+1/2} \left(\log n\right){1/2} \right)$ with probability $1-\mbox{O}\left((\varepsilon2 + \varepsilon) n{-2\rho} + n{-1/2+\scriptstyle{o}(1)}\right)$ for any $\varepsilon >0$, $\rho\in(0,1/4)$. Moreover, if the random entries only have the second moment, we have $\kappa\left(\mathcal{C}_n\right) = \mbox{O}\left( \frac{1}{\varepsilon} n{\rho+1/2} \log n\right)$ with probability $1-\mbox{O}\left((\varepsilon2 + \varepsilon) n{-2\rho} + \left(\log n\right){-1/2}\right)$. For the condition number of a random (non--symmetric or symmetric) Toeplitz matrix $\mathcal{T}_n$ we establish $\kappa\left(\mathcal{T}_n\right) \leq \kappa\left(\mathcal{C}{2n}\right) \left(\sigma_{\min}\left( C_{2n} \right)\sigma_{\min}\left( S_n \right)\right){-1}$, where $\sigma_{\min}(A)$ is the minimum singular value of the matrix $A$. The matrix $C_{2n}$ is a random circulant matrix and $S_n:=F*_{2,n} D_{1,n}{-1}F_{2,n} + F*_{4,n} D{-1}_2 F_{4,n}$, where $F_{2,n},F_{4,n}$ are deterministic matrices and $D_{1,n}, D_{2,n}$ are random diagonal matrices. We conjeture $S_n$ is well conditioned.

Citations (1)

Summary

We haven't generated a summary for this paper yet.