Entropy-Augmented Entropy-Regularized Reinforcement Learning and a Continuous Path from Policy Gradient to Q-Learning (2005.08844v2)
Abstract: Entropy augmented to reward is known to soften the greedy argmax policy to softmax policy. Entropy augmentation is reformulated and leads to a motivation to introduce an additional entropy term to the objective function in the form of KL-divergence to regularize optimization process. It results in a policy which monotonically improves while interpolating from the current policy to the softmax greedy policy. This policy is used to build a continuously parameterized algorithm which optimize policy and Q-function simultaneously and whose extreme limits correspond to policy gradient and Q-learning, respectively. Experiments show that there can be a performance gain using an intermediate algorithm.
Collections
Sign up for free to add this paper to one or more collections.