Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthetic Image Augmentation for Damage Region Segmentation using Conditional GAN with Structure Edge (2005.08628v1)

Published 7 May 2020 in cs.CV and cs.LG

Abstract: Recently, social infrastructure is aging, and its predictive maintenance has become important issue. To monitor the state of infrastructures, bridge inspection is performed by human eye or bay drone. For diagnosis, primary damage region are recognized for repair targets. But, the degradation at worse level has rarely occurred, and the damage regions of interest are often narrow, so their ratio per image is extremely small pixel count, as experienced 0.6 to 1.5 percent. The both scarcity and imbalance property on the damage region of interest influences limited performance to detect damage. If additional data set of damaged images can be generated, it may enable to improve accuracy in damage region segmentation algorithm. We propose a synthetic augmentation procedure to generate damaged images using the image-to-image translation mapping from the tri-categorical label that consists the both semantic label and structure edge to the real damage image. We use the Sobel gradient operator to enhance structure edge. Actually, in case of bridge inspection, we apply the RC concrete structure with the number of 208 eye-inspection photos that rebar exposure have occurred, which are prepared 840 block images with size 224 by 224. We applied popular per-pixel segmentation algorithms such as the FCN-8s, SegNet, and DeepLabv3+Xception-v2. We demonstrates that re-training a data set added with synthetic augmentation procedure make higher accuracy based on indices the mean IoU, damage region of interest IoU, precision, recall, BF score when we predict test images.

Citations (3)

Summary

We haven't generated a summary for this paper yet.