Papers
Topics
Authors
Recent
2000 character limit reached

Optimal measurement budget allocation for particle filtering

Published 18 May 2020 in eess.SY and cs.SY | (2005.08557v1)

Abstract: Particle filtering is a powerful tool for target tracking. When the budget for observations is restricted, it is necessary to reduce the measurements to a limited amount of samples carefully selected. A discrete stochastic nonlinear dynamical system is studied over a finite time horizon. The problem of selecting the optimal measurement times for particle filtering is formalized as a combinatorial optimization problem. We propose an approximated solution based on the nesting of a genetic algorithm, a Monte Carlo algorithm and a particle filter. Firstly, an example demonstrates that the genetic algorithm outperforms a random trial optimization. Then, the interest of non-regular measurements versus measurements performed at regular time intervals is illustrated and the efficiency of our proposed solution is quantified: better filtering performances are obtained in 87.5% of the cases and on average, the relative improvement is 27.7%.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.