Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Clicks Mean Irrelevant? Propensity Ratio Scoring As a Correction (2005.08480v2)

Published 18 May 2020 in cs.IR and cs.LG

Abstract: Recent advances in unbiased learning to rank (LTR) count on Inverse Propensity Scoring (IPS) to eliminate bias in implicit feedback. Though theoretically sound in correcting the bias introduced by treating clicked documents as relevant, IPS ignores the bias caused by (implicitly) treating non-clicked ones as irrelevant. In this work, we first rigorously prove that such use of click data leads to unnecessary pairwise comparisons between relevant documents, which prevent unbiased ranker optimization. Based on the proof, we derive a simple yet well justified new weighting scheme, called Propensity Ratio Scoring (PRS), which provides treatments on both clicks and non-clicks. Besides correcting the bias in clicks, PRS avoids relevant-relevant document comparisons in LTR training and enjoys a lower variability. Our extensive empirical evaluations confirm that PRS ensures a more effective use of click data and improved performance in both synthetic data from a set of LTR benchmarks, as well as in the real-world large-scale data from GMail search.

Citations (25)

Summary

We haven't generated a summary for this paper yet.