Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of multiple modalities on emotion recognition: investigation into 3d facial landmarks, action units, and physiological data (2005.08341v1)

Published 17 May 2020 in cs.CV

Abstract: To fully understand the complexities of human emotion, the integration of multiple physical features from different modalities can be advantageous. Considering this, we present an analysis of 3D facial data, action units, and physiological data as it relates to their impact on emotion recognition. We analyze each modality independently, as well as the fusion of each for recognizing human emotion. This analysis includes which features are most important for specific emotions (e.g. happy). Our analysis indicates that both 3D facial landmarks and physiological data are encouraging for expression/emotion recognition. On the other hand, while action units can positively impact emotion recognition when fused with other modalities, the results suggest it is difficult to detect emotion using them in a unimodal fashion.

Citations (1)

Summary

We haven't generated a summary for this paper yet.