Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical simulations of unsteady viscous incompressible flows using general pressure equation (2005.06448v1)

Published 13 May 2020 in physics.flu-dyn and physics.comp-ph

Abstract: In fluid dynamics, an important problem is linked to the knowledge of the fluid pressure. Recently, another approach to study incompressible fluid flow was suggested. It consists in using a general pressure equation (GPE) derived from compressible Navier-Stokes equation. In this paper, GPE is considered and compared with the Chorin's artificial compressibility method (ACM) and the Entropically damped artificial compressibility (EDAC) method. The three methods are discretized in a staggered grid system with second order centered schemes in space and a third order Runge-Kutta scheme in time. Three test cases are realized: two-dimensional Taylor-Green vortex flow, the traveling wave and the doubly periodic shear layers. It is demonstrated that GPE is accurate and efficient to capture the correct behavior for unsteady incompressible flows. The numerical results obtained by GPE are in excellent agreement with those obtained by ACM, EDAC and a classical finite volume method with a Poisson equation. Furthermore, GPE convergence is better than ACM convergence. The proposed general pressure equation (GPE) allows to solve general, time-accurate , incompressible Navier-Stokes flows. Finally, the parametric study realized in terms of Mach and Prandtl numbers shows that the velocity divergence can be limited by an arbitrary maximum and that acoustic waves can be damped.

Summary

We haven't generated a summary for this paper yet.