Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost sure asymptotics for Riemannian random waves (2005.06389v4)

Published 13 May 2020 in math.PR, math-ph, and math.MP

Abstract: We consider the Riemannian random wave model of Gaussian linear combinations of Laplace eigenfunctions on a general compact Riemannian manifold. With probability one with respect to the Gaussian coefficients, we establish that, both for large band and monochromatic models, the process properly rescaled and evaluated at an independently and uniformly chosen point $X$ on the manifold, converges in distribution under the sole randomness of $X$ towards an universal Gaussian field as the frequency tends to infinity. This result extends the celebrated central limit Theorem of Salem--Zygmund for trigonometric polynomials series to the more general framework of compact Riemannian manifolds. We then deduce from the above convergence the almost-sure asymptotics of the nodal volume associated with the random wave. To the best of our knowledge, in the real Riemannian case, these asymptotics were only known in expectation and not in the almost sure sense due to the lack of sufficiently accurate variance estimates. This in particular addresses a question of S. Zelditch regarding the almost sure equidistribution of nodal volume.

Summary

We haven't generated a summary for this paper yet.