Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadratic Privacy-Signaling Games and the MMSE Information Bottleneck Problem for Gaussian Sources (2005.05743v3)

Published 12 May 2020 in cs.IT, math.IT, and math.OC

Abstract: We investigate a privacy-signaling game problem in which a sender with privacy concerns observes a pair of correlated random vectors which are modeled as jointly Gaussian. The sender aims to hide one of these random vectors and convey the other one whereas the objective of the receiver is to accurately estimate both of the random vectors. We analyze these conflicting objectives in a game theoretic framework with quadratic costs where depending on the commitment conditions (of the sender), we consider Nash or Stackelberg (Bayesian persuasion) equilibria. We show that a payoff dominant Nash equilibrium among all admissible policies is attained by a set of explicitly characterized linear policies. We also show that a payoff dominant Nash equilibrium coincides with a Stackelberg equilibrium. We formulate the information bottleneck problem within our Stackelberg framework under the mean squared error distortion criterion where the information bottleneck setup has a further restriction that only one of the random variables is observed at the sender. We show that this MMSE Gaussian Information Bottleneck Problem admits a linear solution which is explicitly characterized in the paper. We provide explicit conditions on when the optimal solutions, or equilibrium solutions in the Nash setup, are informative or noninformative.

Citations (3)

Summary

We haven't generated a summary for this paper yet.