Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HiFaceGAN: Face Renovation via Collaborative Suppression and Replenishment (2005.05005v2)

Published 11 May 2020 in cs.CV

Abstract: Existing face restoration researches typically relies on either the degradation prior or explicit guidance labels for training, which often results in limited generalization ability over real-world images with heterogeneous degradations and rich background contents. In this paper, we investigate the more challenging and practical "dual-blind" version of the problem by lifting the requirements on both types of prior, termed as "Face Renovation"(FR). Specifically, we formulated FR as a semantic-guided generation problem and tackle it with a collaborative suppression and replenishment (CSR) approach. This leads to HiFaceGAN, a multi-stage framework containing several nested CSR units that progressively replenish facial details based on the hierarchical semantic guidance extracted from the front-end content-adaptive suppression modules. Extensive experiments on both synthetic and real face images have verified the superior performance of HiFaceGAN over a wide range of challenging restoration subtasks, demonstrating its versatility, robustness and generalization ability towards real-world face processing applications.

Citations (115)

Summary

We haven't generated a summary for this paper yet.