Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: a Malliavin Representation (2005.04297v1)

Published 8 May 2020 in q-fin.CP and q-fin.PR

Abstract: In this paper we derive a efficient Monte Carlo approximation for the price of path-dependent derivatives under the multiscale stochastic volatility models of Fouque \textit{et al}. Using the formulation of this pricing problem under the functional It^o calculus framework and making use of Greek formulas from Malliavin calculus, we derive a representation for the first-order approximation of the price of path-dependent derivatives in the form $\mathbb{E}[\mbox{payoff} \times \mbox{weight}]$. The weight is known in closed form and depends only on the group market parameters arising from the calibration of the multiscale stochastic volatility to the market's implied volatility. Moreover, only simulations of the Black-Scholes model is required. We exemplify the method for a couple path-dependent derivatives.

Summary

We haven't generated a summary for this paper yet.