Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network (2005.03945v1)

Published 8 May 2020 in astro-ph.SR and cs.LG

Abstract: We propose a new machine learning approach to Stokes inversion based on a convolutional neural network (CNN) and the Milne-Eddington (ME) method. The Stokes measurements used in this study were taken by the Near InfraRed Imaging Spectropolarimeter (NIRIS) on the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory. By learning the latent patterns in the training data prepared by the physics-based ME tool, the proposed CNN method is able to infer vector magnetic fields from the Stokes profiles of GST/NIRIS. Experimental results show that our CNN method produces smoother and cleaner magnetic maps than the widely used ME method. Furthermore, the CNN method is 4~6 times faster than the ME method, and is able to produce vector magnetic fields in near real-time, which is essential to space weather forecasting. Specifically, it takes ~50 seconds for the CNN method to process an image of 720 x 720 pixels comprising Stokes profiles of GST/NIRIS. Finally, the CNN-inferred results are highly correlated to the ME-calculated results and are closer to the ME's results with the Pearson product-moment correlation coefficient (PPMCC) being closer to 1 on average than those from other machine learning algorithms such as multiple support vector regression and multilayer perceptrons (MLP). In particular, the CNN method outperforms the current best machine learning method (MLP) by 2.6% on average in PPMCC according to our experimental study. Thus, the proposed physics-assisted deep learning-based CNN tool can be considered as an alternative, efficient method for Stokes inversion for high resolution polarimetric observations obtained by GST/NIRIS.

Citations (22)

Summary

We haven't generated a summary for this paper yet.