A novel symmetry of colored HOMFLY polynomials coming from $\mathfrak{sl}(N|M)$ superalgebras
Abstract: We present a novel symmetry of the colored HOMFLY polynomial. It relates pairs of polynomials colored by different representations at specific values of $N$ and generalizes the previously known "tug-the-hook" symmetry of the colored Alexander polynomial. As we show, the symmetry has a superalgebra origin, which we discuss qualitatively. Our main focus are the constraints that such a property imposes on the general group-theoretical structure, namely the $\mathfrak{sl}(N)$ weight system, arising in the perturbative expansion of the invariant. Finally, we demonstrate its tight relation to the eigenvalue conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.