Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-complexity Learning of Linear Quadratic Regulators from Noisy Data (2005.01082v1)

Published 3 May 2020 in eess.SY and cs.SY

Abstract: This paper considers the Linear Quadratic Regulator problem for linear systems with unknown dynamics, a central problem in data-driven control and reinforcement learning. We propose a method that uses data to directly return a controller without estimating a model of the system. Sufficient conditions are given under which this method returns a stabilizing controller with guaranteed relative error when the data used to design the controller are affected by noise. This method has low complexity as it only requires a finite number of samples of the system response to a sufficiently exciting input, and can be efficiently implemented as a semi-definite program. Further, the method does not require assumptions on the noise statistics, and the relative error nicely scales with the noise magnitude.

Citations (113)

Summary

We haven't generated a summary for this paper yet.