Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Large Fields (2005.00888v1)

Published 2 May 2020 in math.AG, math.AP, math.LO, and math.NT

Abstract: We introduce the notion of differential largeness for fields equipped with several commuting derivations (as an analogue to largeness of fields). We lay out the foundations of this new class of "tame" differential fields. We state several characterizations and exhibit plenty of examples and applications. Our results strongly indicate that differentially large fields will play a key role in differential field arithmetic. For instance, we characterise differential largeness in terms of being existentially closed in their power series field (furnished with natural derivations), we give explicit constructions of differentially large fields in terms of iterated powers series, we prove that the class of differentially large fields is elementary, and we show that differential largeness is preserved under algebraic extensions, therefore showing that their algebraic closure is differentially closed.

Summary

We haven't generated a summary for this paper yet.