Papers
Topics
Authors
Recent
Search
2000 character limit reached

Differentially Large Fields

Published 2 May 2020 in math.AG, math.AP, math.LO, and math.NT | (2005.00888v1)

Abstract: We introduce the notion of differential largeness for fields equipped with several commuting derivations (as an analogue to largeness of fields). We lay out the foundations of this new class of "tame" differential fields. We state several characterizations and exhibit plenty of examples and applications. Our results strongly indicate that differentially large fields will play a key role in differential field arithmetic. For instance, we characterise differential largeness in terms of being existentially closed in their power series field (furnished with natural derivations), we give explicit constructions of differentially large fields in terms of iterated powers series, we prove that the class of differentially large fields is elementary, and we show that differential largeness is preserved under algebraic extensions, therefore showing that their algebraic closure is differentially closed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.