Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taylor's law in innovation processes (2005.00321v1)

Published 1 May 2020 in physics.soc-ph

Abstract: Taylor's law quantifies the scaling properties of the fluctuations of the number of innovations occurring in open systems. Urn based modelling schemes have already proven to be effective in modelling this complex behaviour. Here, we present analytical estimations of Taylor's law exponents in such models, by leveraging on their representation in terms of triangular urn models. We also highlight the correspondence of these models with Poisson-Dirichlet processes and demonstrate how a non-trivial Taylor's law exponent is a kind of universal feature in systems related to human activities. We base this result on the analysis of four collections of data generated by human activity: (i) written language (from a Gutenberg corpus); (ii) a n online music website (Last.fm); (iii) Twitter hashtags; (iv) a on-line collaborative tagging system (Del.icio.us). While Taylor's law observed in the last two datasets agrees with the plain model predictions, we need to introduce a generalization to fully characterize the behaviour of the first two datasets, where temporal correlations are possibly more relevant. We suggest that Taylor's law is a fundamental complement to Zipf's and Heaps' laws in unveiling the complex dynamical processes underlying the evolution of systems featuring innovation.

Summary

We haven't generated a summary for this paper yet.