Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PlotMachines: Outline-Conditioned Generation with Dynamic Plot State Tracking (2004.14967v2)

Published 30 Apr 2020 in cs.CL

Abstract: We propose the task of outline-conditioned story generation: given an outline as a set of phrases that describe key characters and events to appear in a story, the task is to generate a coherent narrative that is consistent with the provided outline. This task is challenging as the input only provides a rough sketch of the plot, and thus, models need to generate a story by interweaving the key points provided in the outline. This requires the model to keep track of the dynamic states of the latent plot, conditioning on the input outline while generating the full story. We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states. In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative. Comprehensive experiments over three fiction and non-fiction datasets demonstrate that large-scale LLMs, such as GPT-2 and Grover, despite their impressive generation performance, are not sufficient in generating coherent narratives for the given outline, and dynamic plot state tracking is important for composing narratives with tighter, more consistent plots.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hannah Rashkin (19 papers)
  2. Asli Celikyilmaz (81 papers)
  3. Yejin Choi (287 papers)
  4. Jianfeng Gao (344 papers)
Citations (146)

Summary

We haven't generated a summary for this paper yet.