Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mutlitask Learning for Cross-Lingual Transfer of Semantic Dependencies (2004.14961v1)

Published 30 Apr 2020 in cs.CL

Abstract: We describe a method for developing broad-coverage semantic dependency parsers for languages for which no semantically annotated resource is available. We leverage a multitask learning framework coupled with an annotation projection method. We transfer supervised semantic dependency parse annotations from a rich-resource language to a low-resource language through parallel data, and train a semantic parser on projected data. We make use of supervised syntactic parsing as an auxiliary task in a multitask learning framework, and show that with different multitask learning settings, we consistently improve over the single-task baseline. In the setting in which English is the source, and Czech is the target language, our best multitask model improves the labeled F1 score over the single-task baseline by 1.8 in the in-domain SemEval data (Oepen et al., 2015), as well as 2.5 in the out-of-domain test set. Moreover, we observe that syntactic and semantic dependency direction match is an important factor in improving the results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Maryam Aminian (3 papers)
  2. Mohammad Sadegh Rasooli (15 papers)
  3. Mona Diab (71 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.