Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perceptual reasoning based solution methodology for linguistic optimization problems (2004.14933v1)

Published 30 Apr 2020 in cs.AI

Abstract: Decision making in real-life scenarios may often be modeled as an optimization problem. It requires the consideration of various attributes like human preferences and thinking, which constrain achieving the optimal value of the problem objectives. The value of the objectives may be maximized or minimized, depending on the situation. Numerous times, the values of these problem parameters are in linguistic form, as human beings naturally understand and express themselves using words. These problems are therefore termed as linguistic optimization problems (LOPs), and are of two types, namely single objective linguistic optimization problems (SOLOPs) and multi-objective linguistic optimization problems (MOLOPs). In these LOPs, the value of the objective function(s) may not be known at all points of the decision space, and therefore, the objective function(s) as well as problem constraints are linked by the if-then rules. Tsukamoto inference method has been used to solve these LOPs; however, it suffers from drawbacks. As, the use of linguistic information inevitably calls for the utilization of computing with words (CWW), and therefore, 2-tuple linguistic model based solution methodologies were proposed for LOPs. However, we found that 2-tuple linguistic model based solution methodologies represent the semantics of the linguistic information using a combination of type-1 fuzzy sets and ordinal term sets. As, the semantics of linguistic information are best modeled using the interval type-2 fuzzy sets, hence we propose solution methodologies for LOPs based on CWW approach of perceptual computing, in this paper. The perceptual computing based solution methodologies use a novel design of CWW engine, called the perceptual reasoning (PR). PR in the current form is suitable for solving SOLOPs and, hence, we have also extended it to the MOLOPs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.