Papers
Topics
Authors
Recent
2000 character limit reached

Weakly Submodular Function Maximization Using Local Submodularity Ratio

Published 30 Apr 2020 in cs.DS | (2004.14650v2)

Abstract: Weak submodularity is a natural relaxation of the diminishing return property, which is equivalent to submodularity. Weak submodularity has been used to show that many (monotone) functions that arise in practice can be efficiently maximized with provable guarantees. In this work we introduce two natural generalizations of weak submodularity for non-monotone functions. We show that an efficient randomized greedy algorithm has provable approximation guarantees for maximizing these functions subject to a cardinality constraint. We then provide a more refined analysis that takes into account that the weak submodularity parameter may change (sometimes improving) throughout the execution of the algorithm. This leads to improved approximation guarantees in some settings. We provide applications of our results for monotone and non-monotone maximization problems.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.