Papers
Topics
Authors
Recent
2000 character limit reached

Rényi Bounds on Information Combining

Published 29 Apr 2020 in cs.IT and math.IT | (2004.14408v1)

Abstract: Bounds on information combining are entropic inequalities that determine how the information, or entropy, of a set of random variables can change when they are combined in certain prescribed ways. Such bounds play an important role in information theory, particularly in coding and Shannon theory. The arguably most elementary kind of information combining is the addition of two binary random variables, i.e. a CNOT gate, and the resulting quantities are fundamental when investigating belief propagation and polar coding. In this work we will generalize the concept to R\'enyi entropies. We give optimal bounds on the conditional R\'enyi entropy after combination, based on a certain convexity or concavity property and discuss when this property indeed holds. Since there is no generally agreed upon definition of the conditional R\'enyi entropy, we consider four different versions from the literature. Finally, we discuss the application of these bounds to the polarization of R\'enyi entropies under polar codes.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.