Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Silting Modules over Triangular Matrix Rings (2004.14186v2)

Published 29 Apr 2020 in math.RT

Abstract: Let $\Lambda,\Gamma$ be rings and $R=\left(\begin{array}{cc}\Lambda & 0 \ M & \Gamma\end{array}\right)$ the triangular matrix ring with $M$ a $(\Gamma,\Lambda)$-bimodule. Let $X$ be a right $\Lambda$-module and $Y$ a right $\Gamma$-module. We prove that $(X, 0)$$\oplus$$(Y\otimes_\Gamma M, Y)$ is a silting right $R$-module if and only if both $X_{\Lambda}$ and $Y_{\Gamma}$ are silting modules and $Y\otimes_\Gamma M$ is generated by $X$. Furthermore, we prove that if $\Lambda$ and $\Gamma$ are finite dimensional algebras over an algebraically closed field and $X_{\Lambda}$ and $Y_{\Gamma}$ are finitely generated, then $(X, 0)$$\oplus$$(Y\otimes_\Gamma M, Y)$ is a support $\tau$-tilting $R$-module if and only if both $X_{\Lambda}$ and $Y_{\Gamma}$ are support $\tau$-tilting modules, $\Hom_\Lambda(Y\otimes_\Gamma M,\tau X)=0$ and $\Hom_\Lambda(e\Lambda, Y\otimes_\Gamma M)=0$ with $e$ the maximal idempotent such that $\Hom_\Lambda(e\Lambda, X)=0$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.