Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task-Feature Collaborative Learning with Application to Personalized Attribute Prediction (2004.13930v1)

Published 29 Apr 2020 in cs.LG and stat.ML

Abstract: As an effective learning paradigm against insufficient training samples, Multi-Task Learning (MTL) encourages knowledge sharing across multiple related tasks so as to improve the overall performance. In MTL, a major challenge springs from the phenomenon that sharing the knowledge with dissimilar and hard tasks, known as negative transfer, often results in a worsened performance. Though a substantial amount of studies have been carried out against the negative transfer, most of the existing methods only model the transfer relationship as task correlations, with the transfer across features and tasks left unconsidered. Different from the existing methods, our goal is to alleviate negative transfer collaboratively across features and tasks. To this end, we propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL). Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks and suppressing inter-group knowledge sharing. We then propose an optimization method for the model. Extensive theoretical analysis shows that our proposed method has the following benefits: (a) it enjoys the global convergence property and (b) it provides a block-diagonal structure recovery guarantee. As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks. We further apply it to the personalized attribute prediction problem with fine-grained modeling of user behaviors. Finally, experimental results on both simulated dataset and real-world datasets demonstrate the effectiveness of our proposed method

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhiyong Yang (43 papers)
  2. Qianqian Xu (74 papers)
  3. Xiaochun Cao (177 papers)
  4. Qingming Huang (168 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.