Papers
Topics
Authors
Recent
2000 character limit reached

Proximal Gradient methods with Adaptive Subspace Sampling

Published 28 Apr 2020 in math.OC | (2004.13356v1)

Abstract: Many applications in machine learning or signal processing involve nonsmooth optimization problems. This nonsmoothness brings a low-dimensional structure to the optimal solutions. In this paper, we propose a randomized proximal gradient method harnessing this underlying structure. We introduce two key components: i) a random subspace proximal gradient algorithm; ii) an identification-based sampling of the subspaces. Their interplay brings a significant performance improvement on typical learning problems in terms of dimensions explored.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.