Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EM-GAN: Fast Stress Analysis for Multi-Segment Interconnect Using Generative Adversarial Networks (2004.13181v1)

Published 27 Apr 2020 in cs.LG, cs.NE, eess.IV, and stat.ML

Abstract: In this paper, we propose a fast transient hydrostatic stress analysis for electromigration (EM) failure assessment for multi-segment interconnects using generative adversarial networks (GANs). Our work leverages the image synthesis feature of GAN-based generative deep neural networks. The stress evaluation of multi-segment interconnects, modeled by partial differential equations, can be viewed as time-varying 2D-images-to-image problem where the input is the multi-segment interconnects topology with current densities and the output is the EM stress distribution in those wire segments at the given aging time. Based on this observation, we train conditional GAN model using the images of many self-generated multi-segment wires and wire current densities and aging time (as conditions) against the COMSOL simulation results. Different hyperparameters of GAN were studied and compared. The proposed algorithm, called {\it EM-GAN}, can quickly give accurate stress distribution of a general multi-segment wire tree for a given aging time, which is important for full-chip fast EM failure assessment. Our experimental results show that the EM-GAN shows 6.6\% averaged error compared to COMSOL simulation results with orders of magnitude speedup. It also delivers 8.3X speedup over state-of-the-art analytic based EM analysis solver.

Summary

We haven't generated a summary for this paper yet.