Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Interpretability: Methods, Applications, and Future Direction for Understanding Deep Learning Models in the Context of Sequential Data (2004.12524v1)

Published 27 Apr 2020 in cs.LG and stat.ML

Abstract: Deep learning continues to revolutionize an ever-growing number of critical application areas including healthcare, transportation, finance, and basic sciences. Despite their increased predictive power, model transparency and human explainability remain a significant challenge due to the "black box" nature of modern deep learning models. In many cases the desired balance between interpretability and performance is predominately task specific. Human-centric domains such as healthcare necessitate a renewed focus on understanding how and why these frameworks are arriving at critical and potentially life-or-death decisions. Given the quantity of research and empirical successes of deep learning for computer vision, most of the existing interpretability research has focused on image processing techniques. Comparatively, less attention has been paid to interpreting deep learning frameworks using sequential data. Given recent deep learning advancements in highly sequential domains such as natural language processing and physiological signal processing, the need for deep sequential explanations is at an all-time high. In this paper, we review current techniques for interpreting deep learning techniques involving sequential data, identify similarities to non-sequential methods, and discuss current limitations and future avenues of sequential interpretability research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Benjamin Shickel (24 papers)
  2. Parisa Rashidi (59 papers)
Citations (13)