Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias Busters: Robustifying DL-based Lithographic Hotspot Detectors Against Backdooring Attacks (2004.12492v1)

Published 26 Apr 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Deep learning (DL) offers potential improvements throughout the CAD tool-flow, one promising application being lithographic hotspot detection. However, DL techniques have been shown to be especially vulnerable to inference and training time adversarial attacks. Recent work has demonstrated that a small fraction of malicious physical designers can stealthily "backdoor" a DL-based hotspot detector during its training phase such that it accurately classifies regular layout clips but predicts hotspots containing a specially crafted trigger shape as non-hotspots. We propose a novel training data augmentation strategy as a powerful defense against such backdooring attacks. The defense works by eliminating the intentional biases introduced in the training data but does not require knowledge of which training samples are poisoned or the nature of the backdoor trigger. Our results show that the defense can drastically reduce the attack success rate from 84% to ~0%.

Citations (7)

Summary

We haven't generated a summary for this paper yet.